Home Blog

Limelite 3D Printing Hub: Australia’s first Facility for Additive Manufacture of Light Fixtures


It’s not Silicon Valley and it’s not a collection of boffins in a “think-tank’, but in a light industrial precinct of Thomastown, one company may be changing the future of a worldwide industry: Limelite – an Australia based company, fabricates the next-generation light fixtures at the inhouse ‘Limelite 3D Printing Hub’. At 3DPrinting.Lighting, we’ve got some deep and exclusive insights in Limelite’s activities and, in addition, we had the privilege to speak to Paul Hearne, Limelite’s CEO, and get his deeper outlooks in his philosophy regarding the future of advanced lighting manufacture.

From Traditional to Additive Manufacture

A couple of years ago Paul Hearne, the founder of Limelite, attended a seminar on 3D printing at the Swinburne University of Technology. All of a sudden, Paul realized the flexibility offered by additive technologies could help build more customized luminaires at a lower cost and with great added value, in contrast to having them fabricated in traditional ways.

What began as a premature discovery ended up in a restructuring of his company, including an expansion of his facilities and the appointment of a specialized internal design and manufacturing team. Ultimately, Limelite moved from a project lighting company advising end-users on the lighting solutions of their needs, to an advanced 3D manufacturing business in only a few short years. From ‘selling fixtures made by others’ to create their own range of ‘customized 3D printed luminaires’.

To make change happen, Paul and his design team – led by his Chief Designer Nigel Brockbank – launched a joint project with industrial designers working at Swinburne University. As a result, the ‘On Track’ lighting collection was born, the first lighting Limelite range that was almost entirely 3D printed. The ‘On Track’ range was designed for additive manufacturing from scratch. After the moment the first 3D printed Luminaires hit the market, Limelite started to expand its 3D printing operations. At the moment of writing, it includes the production of three collections of Luminaires along with custom-made jigs supporting Limelite’s traditional manufacturing plants.

The Limelite 3D Printing Hub: Future Proof and ready for (further) take off!

LimeLite 3D Printing Hub

The Limelite investment in their own 3D Printing Hub was intended to achieve a number of goals.

First, the aim was to expand its business into the decorative lighting market, while still offering the commercial smarts. To date, Limelite had experience in providing standardized lighting solutions for educational buildings and medical facilities. Decorative lighting was a different story because the Luminaires had to fit skillfully designed interiors of aged care, offices, schools, hotels or cafes. Apart from getting the design right, the traditional manufacturing costs in this field proved to be higher as the 3D printed decorative lighting range and now also offer a much greater variety.

Secondly, Paul and his team realized that through the application of 3D Printing technologies, Limelite would get access to a range of unique features and benefits that were not available through conventional fabrication, such as molding technology. This would add significant value for the company and its customer base. In the section here after, we break them down for you in more detail.

Finally, growing a ‘future-proof-company’ requires some serious ‘forward-thinking’. Paul and his team believe that the future of fabrication is vastly different from today. 3D Printing will change the way products are designed, fabricated and transported. Limelite is about the ‘localization’ of manufacturing. With their innovations in the advanced manufacture with 3D printing as a process, they aim to create “Point of difference” luminaires. Limelite has found a creative and scalable way of doing business, utilizing ‘Industry 4.0 Thinking’ with a just-in-time methodology.

Image of 3D printer with 3D printed lamp cover
Zortrax 3D Printing equipment is used for generation of the various Luminaires and Fittings.
You can also refer to the Zortrax blog for a special item on the ‘Limelite 3D Printing Factory’.

3D Printing Benefits for LimeLite

By setting up the 3D Printing Hub, Limelite got access to a range of interesting benefits, that put them in a unique competitive edge in the lighting market. While allowing tremendous flexibility of design, 3D printing also gives the business a number of very practical benefits. Let’s breakdown some of the advantages they now have access to in relation to their business:

On-Demand Production: While injection molding is obviously faster, speed is not critical in decorative lighting. Making thousands of luminaires in a week rather than in a couple of months is easily possible, but then you are also forced to keep stock and pay for it. With 3D printing on-site, production is closely matched to demand. Limelite makes the luminaires after the orders come in. At the end of the day, using 3D printers for production is cheaper than injection molding, when tooling and storage costs are included.

Enhanced Customization: Customization of Light Fittings. Customers buying Limelite luminaires can ask for slightly ‘tweaked’ designs. For example, if a luminaire has a visible heat sink at the back and the customer wants it covered, that’s easily doable with only a small design change. With traditional manufacturing technologies, they would have to pay for retooling just to make the housing longer to cover the heat sink. With 3D printing the design could be adjusted in a couple of hours and printed accordingly.

Easy Design Iterations: Absorbing and implementing new technologies that appear on the lighting market brings along challenges in design. To give an example: if a next-gen light sensor comes to the scene, and it needs to be incorporated in the design, integrating this new sensor would take weeks or months if it had to be done with injection molding. With 3D printers, we could integrate this sensor in days.

No Tooling/Inventory: In fact, Limelite has no costs for tooling and storage. Typically, both 3D printing and injection molding are used for production. Standardized parts, like the ones with which a pendant fixture that’s attached to a ceiling, are injection molded. Decorative elements that bring out a particular style of the lamp are 3D printed. For the initial one, dozens if not hundreds of parts need to be sourced, components for the latter one can be produced to demand.

No-post Processing Needed: At this point, Limelite does not use any post-processing for their 3D printed luminaires. They are happy with the quality of surfaces and consistency of the 3D printers, and decided to use the fine detail layering of the print process as a ‘design gift’. Currently, they see no reasons for post-processing the physical, but it is not to say it is not going to change in the future when further optimizations can be done or value can be added.

Shortened Cycle Times: With the 3D Printing Hub in house, it takes 3 days to go from a sketch to a functional luminaire. Roughly, Limelite’s Hub can produce roughly 20 fixtures a day. Typically, from the 30 available 3D printers, 20 are used for production while 10 are busy running new prototype lamps, jigs and components for conventional products. This baseload can be scaled up overnight to meet increased demand. Limelite has designed room in its Hub for over 150 printers, designing for the future.

Easy Assembly: Also, the assembly can be significantly eased. It’s possible for to produce parts that simply clip into each other so there is no need for using glues or screws to put them together. In the assembly, the entire process turned out to be quite cost-effective. Additionally, this can also reduce assembly fatigue on staff, improving workplace health and safety too.

Cost-Efficiency: Last but not least: 3D printers allow them to achieve designs that are difficult or downright impossible to achieve with injection molding technology. With the lack of storage and tooling costs, 3D printed lamps are price-competitive. Although added value remains the primary driver, having moderate pricing for exclusive products is a welcome additional benefit. It all helps Limelite to compete and win against low-priced imports while giving our customers unique designs and better quality in the bargain. A true win-win scenario!

Lighting a New Way Forward

There’s another factor at work at Limelite and that boils down to passion for the job. Limelite began as a family company operating out of a garage. When you do that, you simply have to love what you do or you won’t last long. Limelite wants everyone who works here to be excited about the future of this company. After all, it’s their employees’ future too, so they encourage people to learn and grow.

“We come to work each morning knowing we’re making a difference. I reckon that excites us all!”

The company is also adamant that no item bearing its brand will leave the factory without being thoroughly tested. It’s important that Limelite customers know what they’re getting – and that it works exactly the way it should. Every single light made is thoroughly tested – it’s another edge they have over the cheap imports.

Limelite is steadily growing as a manufacturer and marketer of 3D printed commercial and architectural lighting, and is one of the first of its kind in the world to recognize and harness the potential of 3D printing. According to Limelite CEO, Paul Hearne, the revolution has just begun.

More information is available on Limelite’s company website.

Editor recommendation:

We also recommend you to read the interview with Paul Hearne, Managing Director of LimeLite, on the future of lighting manufacture that will appear in our blog soon. Stay tuned!

LRC 3D Printing Educational Opportunities for Lighting Professionals

Header image for Online LRC 3DPrinting Course for Lighting Professionals

Are you equipped for the next Lighting Revolution? The Lighting Research Center (LRC), conducting research and development activities in the application of 3D printing to lighting since 2015, is sharing the knowledge they gained to date in a six-week, interactive, online course on the application of 3D printing to the design, development, and manufacturing of lighting components and products. The LRC 3D Printing Course will begin on September 30, 2020, and will run through November 18, 2020. 

The 3D Printing Revolution has Begun

Additive manufacturing (AM), more commonly known as 3D printing, is poised to revolutionize the lighting industry. The revolution has already begun with a handful of designers setting the pace and some OEM manufacturers now offering 3D-printed lighting fixtures to the commercial market, but it’s just a glimpse of what’s more to come. It is expected that 3D printing will offer many benefits in the manufacturing of components for lighting systems, including the fabrication of cost-effective unique parts that cannot be made using traditional manufacturing methods, such as differentiating custom optics, heatsinks and flexible PCB and fixture designs.

3D Printing Course for Lighting Professionals

The course brought to you in an online setting, will provide training in the application of 3D printing to the design, prototyping, and manufacturing of lighting system components, and give participants the knowledge and skills needed to begin applying this technology in their own companies.

The course is designed for professionals from the lighting, 3D printing, additive manufacturing, and related industries to understand the possibilities of 3D printing for lighting and to learn more about each industry’s needs and capabilities.

LRC 3D Printing – More Info and Registration

You can find more information and testimonials about the course at our event pages, or just refer to the LRC pages directly to take part in the sessions and register.

Editors note:

This high-level quality course is highly recommended to any lighting professional interested in exploring the advantages and possibilities of 3D printing methodologies.

Partnership Luximprint and SilvaCo Optics Take Printed Optics to Silicon Valley

Image to illustrate partnership between Luximprint and SilvaCo to represent printed optics in Silicon Valley

Luximprint, a leader in offering multi-market prototyping services for Printed Optics and Optographix based in The Netherlands and SilvaCo Optics, a renowned California based optics, sensors and components consulting practice announced this week the partnership they entered into for marketing Luximprint solutions in California. An interesting move that makes access to rapid prototyping services for custom optics easier in the Silicon Valley surroundings. Here’s the latest.

Printed LED Optics – Fast, Flexible and Cost-Effective

Rapid prototyping services for custom optics are an interesting approach for designers and engineers working with light. Thanks to the optical 3D printing process, a proprietary solution by Luximprint to generate custom optics, tailored parts are available in days, which enables a fast, flexible and cost-effective engineering job when it comes to the development and implementation of new high tech systems in multi-market applications.

Printed Optics by Luximprint. The additive process speeds up novel system development and shortens the average time to market. Image courtesy of Luximprint.

The direct ‘CAD-to-Optic’ manufacturing process from Luximprint grows optical clarity parts additively, aiming to offer a novel approach to validate optics designs, justify mold-tooling investments, as well as to create inspirational and functional mock-ups for event and user demonstration.

Printed Optics Come to Sillicon Valley

By having SilvaCo appointed as a local sales agent, needs centering around optics and photonics applications can now easily be addressed, just in time. Peter Silva, Principal of SilvaCo, was raised and educated in Silicon Valley when the South Bay was more orchards than manufacturing and before there was high tech. SilvaCo will work diligently to help find a solution that can satisfy customers that are in search of fast, flexible and cost-effective solutions in custom optics and other 3D printed solutions as marketed by Luximprint.

Peter Silva, Principal of SilvaCo Optics – a true Silicon Valley veteran in offering high tech solutions. Picture at the right shows light guiding plate with luminous cowboy contour. Images courtesy of SilvaCo Optics and Luximprint.

Custom Optics in Days by SilvaCo Optics

Companies located at the US West Coast in search of rapid prototyping custom optics solutions are encouraged to contact SilvaCo to discuss their next projects and utilize the powerful benefits of optical 3D printing. With typical lead times of 5-10 business days and global delivery with local support, rapid availability of custom optics is now guaranteed!

LightArt Coil Collection: From Waste to Watts


After over two years of intense research & development, the Seattle based company ‘Lightart’ finally shared its new ‘Coil Collection’ with the world. An exciting, 3D printed series of new pendants created from upcycled waste. These distinct matte fixtures have a look and feel like pottery, spun and handcrafted. Unexpected from fixtures produced through additive manufacturing.

A Unique Merge of Design and Upcycled Materials Science

How can we make recycled content look as good as possible? This was the key question during the product development phase for LightArt’s founder Ryan Smith and his team: “This is where things started to get really challenging. When we first started, it did not look polished—it looked like what you might expect when you’re trying to turn garbage into something beautiful. But we kept following the promise of the process, and made something we’re so proud of.”

Materials science and design came together at the LightArt production studio, aiming to create a material that looks unique, custom, and unlike previously seen upcycled materials. Image courtesy of LightArt.

The new Coil Collection addresses a central question the industry is facing: What can we do with waste? The team worked with the engineering division of parent company 3form to figure out what the base material possibilities were, and pushed the boundaries in collaboration with other polymer companies across the US to tap into collective expertise and drive for innovation.

Upcycling Plastic into Pendants: The Coil Collection

LightArt’s Coil Collection is made from internal waste material, but the brand hopes to expand the practice throughout the industry over time, as the LightArt facility strives to become a manufacturer of goods that are net positive in climate, waste, and energy.

LightArt’s Coil Collection is entirely made from internal waste material. Image courtesy of LightArt.

Visually Appealing Content, Curvatures and Distinct Geometries

The design team of LightArt aimed for recognized classic pendant shapes focused on distinct geometry and curvature with a matte finish, giving the fixtures a pottery-like quality. The textured finish, inherent to the additive manufacturing process, is complemented by subtle algorithmic adjustments to achieve a handmade, one-of-a-kind feel.

The LightArt tdesignersfinally chose seven elegant shapes, deliberately defining the endless options afforded by additive manufacturing to create a curated product with a distinct LightArt feel. Departing from what is expected from a 3D printed item, the form is textured, tactile, and unique.

Sustainable Innovation

In design, recycling and sustainable innovation cannot be the sole drivers for innovation —the product has to be attractive, too. LightArt wanted the color and aesthetic of the Coil Collection to have a distinct value. Sorting the colors of the waste through new technology, the company came up with a monochrome black and white palette for the pendants.

We at 3DPrinting.Lighting will keep following LightArt with great interest and report upon the availability of new and sustainable concepts!

Interplay Lighting: Redefining Lighting one Layer at a Time

Header Image for blogpost at 3DPrinting.Lighting on Interplay Lighting 3D Printed Fixtures

Interplay Lighting is an Eatonton, GA, United States-based manufacturer of 3D printed decorative lighting fixtures. Passionate about light, they love to play with light and reveal its power and beauty in ways that have never been done before. Interplay is anti-mass-produced, soulless, generic lighting, and tries to establish a new standard in elegant and customized lighting to fight ‘old-school’, ordinary, and cookie-cutter lighting.

The Interplay Lighting Team has been creating breakthrough lighting products for 25+ years. Image courtesy of Interplay Lighting.

​25 Years Breakthrough Lighting Experiences

The team at Interplay Lighting has a proven track record of creating breakthrough lighting products for over 25 years renowned firms, such as Cree Lighting. They hold dozens of patents on some of the most significant lighting innovations over the last two decades. 

3D Printing Architectural Lighting comes with Unparalleled Design Freedom. Picture courtesy of Interplay Lighting

With the introduction of the 3D printed lighting concept, Interplay is providing access to a new range of commercial lighting, architectural lighting and residential lighting solution taking benefit of unparalleled design freedom.

3D Printing Your Light Imagination

​Today we’re able to print our imagination in ways never dreamt of before. 3D printing technologies make it possible to create designs traditional manufacturing processes can’t. The results are stunning designs that capture the magic of light in ways that haven’t been seen before.

High output pendants and wall sconces enable the harmonious interplay of light, architecture, and people. Image courtesy of Interplay.

The layerwise building process of most 3D printing methodologies create fabric like appearances that looks soft, but are incredibly durable. And with countless material and color options, there is a look that’s just right for your setting to be lit.

“Give your home an instant upgrade with unparalleled lighting that makes people say “Wow!”

The company is another interesting start-up in the lighting arena that utilizes the power of 3D Printing to create unique and customized light experiences.

Interplay just launched a series of pendants and desk lamps based on the classic medium-base socket/cord/canopy design. You can visit their offering and easily buy via the online store.

We have added them to our ‘to watch’ list and will share more news upon availability!

Independent UL 3D Printing Research Study on Safety and Performance for 3D Printed Plastic Parts

Header image for blogpost UL 3D Printing Research Study at 3DPrinting.Lighting. Image and logo courtesy of UL

Underwriters Laboratories (UL), a leading safety science company based in Northbrook, Illinois, recently published its research findings detailing the effects of 3D printing on safety-critical polymer performance properties. The UL 3D Printing Research study findings have been used to develop a framework for evaluating and qualifying materials, helping stakeholders across the additive manufacturing (AM) supply chain to mitigate risk and deliver quality and performance.

UL 3D Printing Research Study

The key topics UL investigated include flammability, ignition and electrical properties of samples that were 3D printed against samples manufactured using conventional, injection-molded methods. UL Researchers identified significant safety and performance variations and concluded that performance ratings from traditional manufacturing techniques cannot be applied when the same material is used in a 3D printing process to print a 3D part.

UL Blue Card Certification Program

In response, UL has developed a certification program for plastics for additive manufacturing (Blue Card), The UL Blue Card presents the data necessary to ensure the integrity and usefulness of materials intended for 3D printing and 3D printed components and products. A Blue Card is automatically issued when a material intended for 3D printing receives a UL Recognized Component Mark.

“UL Researchers identified significant safety and performance variations and concluded that performance ratings from traditional mFG. techniques cannot be applied IN 3D pRINTING”

UL Certified AM materials are published in UL’s publicly available Product iQTM database, making them searchable to thousands of manufacturers looking for a certified 3D material. By using an independently tested and certified 3D material, end-product manufacturers can save time and money certifying their end-products or systems. As Blue Cards are specific to a 3D printer, a 3D printer manufacturer can also certify material for explicit use on his equipment.

Certified Plastics for AM Whitepaper

Read UL’s white paper ‘Certifying plastics for additive manufacturing’ to get an overview on UL’s research. A copy of the detailed research study is available for download, in addition to the study ‘Processing the Future of Additive Manufacturing‘ that was published back in 2018.

Back in 2015, UL published its first compliance guideline, titled “3D Printing & Additive Manufacturing Equipment Compliance Guideline” as well as its “E-Learning Program teaching the basics of 3D Printing“.

For more information about UL’s certification program for Plastics for Additive Manufacturing program, visit UL.com/BlueCard.

Designed by Ammunition Fabricated by Gantri: Beautiful Sustainable Designer Lights

Header image for blogpost on 3DPrinting.Lighting for new Ammunition collection at Gantri

Designed by Ammunition and made possible by Gantri’s radical approach to manufacturing, three new collections of lighting are now available for people seeking a better approach to design, craft and sustainability as they shape and illuminate their spaces. Named ‘Carve’, ‘Gio’ and ‘Signal’, the three collections are inspired by Gantri’s 3D printing platform and the intricate, organic and unexpected possibilities it provides compared to conventional manufacturing.

The Collection: Designed by Ammunition – Fabricated by Gantri

Sustainably produced using a corn-based material and manufactured in California, each light is 3D printed on-demand, hand-assembled and finished, in a process that feels less like industry and more like artistry.

Featuring table, floor and wall-mounted lights, the lighting range includes next collections:

1. Signal Collection

The Signal collection features louvered slats that are fused to the main body of each light through 3D printing technologies. The slats were inspired by the functional aspects of exterior architectural louvers used to bring light and air inside.

2. Carve Collection

The Carve Collection’s monolithic forms and seamless surfaces feel carved from stone rather than assembled like conventionally manufactured objects.

3. Gio Collection

The Gio Collection is inspired by Italian Lighting Designs of the 1970’s that sought to remake and refresh historic archetypes through new materials and processes. The unique character of the lights came to life by manipulating and rationalizing classical geometric elements so they interact with each other in playful ways.

Ammunition and Gantri Designer Toolkit

In addition to bringing floor and wall lighting into the Gantri platform, Ammunition also worked together to create an improved process and toolkit that makes it easier for any designer to make use Gantri. This major update offers designers the freedom and flexibility to create while maintaining Gantri’s high standards for materials, additive manufacturing, packaging, pricing, shipping, and user experience.

Availability Ammunition 3D Printed Lights:

The collections are available for purchase via Gantri’s online marketplace.

XTPL and OSRAM: A Cooperation for Creation of Conductive Connections

Image for blogpost at 3DPrinting.Lighting on Osram Partnership with XTPL

Germany based lighting manufacturer OSRAM approached XTPL, a technology provider of ultra-precise printing based in Wrocław, Poland for a cooperation in the field of additively fabricating conductive connections. OSRAM is looking for effective technological solutions to address the challenges connected with the manufacture of future generations of lighting elements, and it is the XTPL printing technology that might provide a answer to their needs.

XTPL and OSRAM Cooperation

OSRAM has decided to cooperate with XTPL to evaluate the technology for creating specific conductive connections. XTPL is a company developing globally innovative, additive manufacturing technology that enables ultra-precise printing of nanomaterials with a precision of 1-8 micrometers.

The additive XTPL method ensures significant time and material savings and allows the advantages of print to be used in the production of advanced devices thanks to unprecedented precision. Image courtesy of XTPL.

Additive Manufacturing Technology for Various Applications

The unique XTPL printing system allows for precise deposition of an in-house formulated nano ink on a variety of substrates to obtain conductive and nonconductive submicron structures. The potential industrial application of the XTPL method in the lighting industry is proof of its platform character which allows it to be used in a number of fast-growing high technology industries.

The purpose of the agreement signed by both partners is to confirm the parameters of the technology developed and commercialized by XTPL and to assess the possibility of implementing it in OSRAM’s production processes.

OSRAM and its Track Record in the Lighting Industry

OSRAM is a global player in the lighting industry. Together with GE Lighting and Signify, it is one of the three largest manufacturers of lighting equipment in the world. The enterprise also develops and manufactures optoelectronic materials. OSRAM operates as part of a corporate group which in the financial year 2018/2019 generated revenue of nearly EUR 3.5 billion. The group has a highly developed research and development arm with almost 18,000 patents and patent applications in its portfolio. In 2019, OSRAM allocated more than 11% of its annual revenue to R&D activities.

Solutions for Displays and Smart Glass Industries

A solution similar to the one sought by our partner has been partly developed by XTPL during work on a technology dedicated to repairing open defects in displays and the smart glass industry. As a result, XTPL can start cooperation with OSRAM at the proof of concept stage, without first going through a several months-long research project related to the opening of new application fields. For many years, the lighting industry has been looking towards increased use of light-emitting semiconductor materials that convert electrical energy into light energy. They are used in LED lighting and OLED.

The Global Lighting Industry

The size of the global LED lighting market in 2019 is estimated at almost $70 billion, and is expected to be driven towards $100 billion by 2023, which means a rapid growth of 9% (CAGR 2019-2023). This makes it a very interesting and promising sector for the Polish company.

At 3DPrinting.Lighting, we’re following these interesting cross-market partnerships with great interest and will report upon further developments once they appear.

Plumen 3D Printed Lamp Shades: Recycled, Recyclable and Biodegradable

Header image used in blog about Plumen 3DP biodegradable fixtures at 3DPrinting.lighting

In its latest designer collaboration with Batch.works, UK start-up Plumen pushed the boundaries of sustainable design to bring a range of 3D printed lamp shades to the market. The shades are made by using recycled plastic filaments from water bottles, fridges and other sources of plastic pollution. Here are some further introductions to the stunning decorative lighting collection of Plumen 3D Printed Lamp Shades.

Collaboration with Batch.works

Batch.works was established back in 2016 by former architect Julien Vaissieres. The aim of his newly invented company has been to create affordable and eco-friendly products, making the most out of 3D printing, most notably its speed and efficiency. Recently, Batch.works cooperated with five different design studios to create the Plumen 3D Printed Lamp Shades collection. The collection was inspired by everything from the Bauhaus movement to geometric forms of the Art Deco era.

Here are some of the highlights of the Plumen 3D Printed Lamp Shades Collection:

Image of the Ribbon 3D printed fixture by Plumen for use in the blog on biogradable designs by 3DPrinting.Lighting.
‘Ribbon’ by BOLD features a fluid surface that bends over itself. Image courtesy of Plumen.

Ribbon by BOLD

‘Ribbon’ features a fluid surface that bends over itself. The space created within the shade is filled with light, revealing and emphasizing the different volumes created by the enveloping surface. The vertical lines that run through the shade, combined with the horizontal layers characteristic of the 3D printing technologies used, amplify the idea that a piece of textile has solidified around the light to direct and enhance it.

NEO by Matthias Lauche

One other pendant fixture in the 3D printed range, named ‘Neo’, is based on geometric forms of the Art Deco era. Its designer, Matthias Lauche, has been taking familiar, historic shapes and cast them in a new role using 3D printing. Two shades stack on top of one another to fit and frame Willow’s delicate silhouette. The dual nature of the shade means several color combinations are possible.

Image showing 3D printed fixtures by Plumen inspired by Art Deco for use in the 3DPrintnig.Lighting Blog.
Image of applied 3D printed Plumen  NEO pendants for use in 3DPrinting.Lighting blog.
The first designs from the NEO collection are available with more to follow. The shades come in black or white, with custom colors available on request. Images courtesy of Plumen.

HIVE by Luke Deering

Following his earlier successes, designer Luke Deering was asked by Plumen to create another bespoke shade for the bulbs collection. The result was a biomorphic, recycled 3D printed shade called ‘Hive’.

Image of HIVE by Plumen as illustration used in the 3DP.Lighting blog on Plumen and biogradability.
‘Hive’ is an elegant biomorphic design drawing on the natural grace of the honeycomb structure. Image courtesy of Plumen.

Housed within the tessellating hexagonal design, the fluid shape resembles the flight path of an assiduous bee conducting its admirable work, or the softer curves and calmer light of the other version.

Image of 3D printed Plumen  pendants as a color twist.
The colorful HIVE shades work to frame the bulbs, allowing their beauty to shine through, while also taming the glare of their naked light. Together, they become a unified and natural objet d’art. Images courtesy of Plumen.

Biodegradable materials: Recycled and Recyclable

The new Batch.works lampshades are all made with a filament supplied by Amsterdam’s social enterprise Reflow, which recycles and repurposes plastics that would otherwise be sent to landfill or incinerated. They’re also 3D printed to order at Batch.works, significantly lowering the amount of produced waste.

Closing the life cycle of the design, when you’re finished with them, they can be recycled with the rest of your domestic plastics, ready to be reinvented once more.

We’re delighted to see inventive start-up companies like Plumen breaking a lance for biodegradable lighting solutions. So Signify did with launching its recent services for tailormade 3D printed luminaires using recycled CD’s to create distinctive light shades for its users to demand.

We’ll keep following the Plumen team with great interest, keep our eyes open and inform you about further releases in 2020…

LRC Partners with Eaton Corporation to Research Additive Fabrication of Integrated Luminaires

Header image for blogpost on cooperation of LRC and Eaton at 3DPrinting.Lighting

The Rensselaer Lighting Research Center (LRC) has partnered with Eaton Corporation on a research project to develop a complete, additively manufactured, integrated LED-luminaire. Under funding from the US Department of Energy (DOE), the project will address the main barriers to widespread adoption of additive manufacturing technology (also known as 3D printing) as applied to solid-state lighting solutions. 

3D Printing a Fully Integrated Luminaire

Over the next two years, the project partners will conduct material science, electronics, printed optics, and advanced manufacturing research to investigate the transformational potential of a fully additively manufactured, LED integrated luminaire, with a focus on reducing the cost of the luminaire’s dominant subsystems.

Components of a solid-state lighting luminaire will be fabricated using additive manufacturing methods, including mechanical and thermal management structures, electrical and electronic structures (on three-dimensional representative substrates), and optical and light reflective surfaces

SSL R&D Funding Opportunity Program

The project, led by Eaton, was competitively selected through the DOE’s Solid State Lighting R&D Funding Opportunity program, and draws upon the LRC’s growing expertise in the field of 3D printed lighting research. 

For more information about the LRC’s 3D printing research, please visit https://www.lrc.rpi.edu/programs/solidstate/3DPrinting.asp